HORNSBY GIRLS HIGH SCHOOL

Mathematics Extension 1

Year 12 Higher School Certificate

Trial Examination Term 3 2024

STUDENT NUMI	BER:						
				TEACH	ER NAME:	Ms Guan, Ms	Murray
STUDENT NAME:				((circle one)	Mr Payne, Mrs	Sztajer
General Instruction	is: • R	• Reading time – 10 minutes					
	• W	 Working time – 2 hours 					
	• W	Write using black pen					
	• C	alculators a	pproved by	NESA ma	y be used		
	• A	 A reference sheet is provided at the back of this paper 					
	• In	 In Questions 11–14, show relevant mathematical 					
	re	reasoning and/ or calculations					
Total Marks: 70	Sec	Section I – 10 marks (pages 3–6)					
	• At	Attempt Questions 1–10					
	• Al	 Allow about 15 minutes for this section 					
	Sec	Section II – 60 marks (pages 7–10)					
	• At	Attempt Questions 11–14					
	• St	 Start each question in a new writing booklet 					
	• W	/rite your st	udent numb	er on ever	y writing bo	oklet	
	• Al	llow about ´	1 hour and 4	45 minutes	for this sec	otion	
Question	1-10	11	12	13	14	Total	

Question	1-10	11	12	13	14	Total
Total						
	/10	/15	/15	/15	/15	/70
Outcomes assessed: MF 12-1 12-2 12-3 12-4 12-7						

Outcomes assessed: ME 12-1, 12-2, 12-3, 12-4, 12-7

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

Question 1

What is the size of the angle between the vectors $\underline{a} = 3\underline{i} + \underline{j}$ and $\underline{b} = 2\underline{i} - \underline{j}$?

(A)
$$\frac{\pi}{6}$$

(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

Question 2

Which of the following integrals is equivalent to $\int \cos^2 4x \, dx$?

(A)
$$\int \frac{1 - \cos 8x}{2} dx$$

(B)
$$\int \frac{1 + \cos 8x}{2} dx$$

(C)
$$\int \frac{1 - \cos 4x}{2} dx$$

(D)
$$\int \frac{1 + \cos 4x}{2} dx$$

Question 3

What is the remainder when $P(x) = x^3 - 3x^2 + 2x + 3$ is divided by (x+1)?

(A) -3
(B) -2
(C) 2
(D) 3

Question 4

Consider the differential equation $\frac{dy}{dx} = \frac{1}{xy}$. Which of the following equations best represents this relationship between x and y?

- $(A) \qquad y = \frac{1}{x} + c$
- $(B) y = \ln |x| + c$
- (C) $y^2 = \ln |x| + c$
- (D) $y^2 = 2\ln|x| + c$

Question 5

For the two non-zero vectors \overrightarrow{OA} and \overrightarrow{OB} it is known that $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$.

Which of the following MUST be true?

- (A) Either $\overrightarrow{OA} = 0$ or $\overrightarrow{OB} = 0$
- (B) \overrightarrow{OA} and \overrightarrow{OB} are parallel
- (C) \overrightarrow{OA} and \overrightarrow{OB} are perpendicular
- (D) *O*, *A* and *B* are collinear

Question 6

What is the constant term in the binomial expansion $\left(3x - \frac{2}{x^2}\right)^9$?

(A)
$$\binom{9}{3} 3^3 \cdot 2^6$$

(B) $\binom{9}{6} 3^6 \cdot 2^3$
(C) $-\binom{9}{3} 3^3 \cdot 2^6$
(D) $-\binom{9}{6} 3^6 \cdot 2^3$

Question 7

Which of the following is equivalent to $\sin x + \sqrt{3} \cos x$ expressed in the form $A\cos(x+\theta)$?

(A)	$2\cos\left(x-\frac{\pi}{6}\right)$
(B)	$2\cos\left(x+\frac{\pi}{6}\right)$
(C)	$4\cos\left(x-\frac{\pi}{6}\right)$
(D)	$4\cos\left(x+\frac{\pi}{6}\right)$

Question 8

Six adults and four children need to be seated at a circular table. How many arrangements exist if two particular children must be separated?

- (A) 10 080
- (B) 17 280
- (C) 282 240
- (D) 362 880

Question 9

Which of the following pairs of parametric equations are <u>NOT</u> equivalent to $y = \sqrt{x+1}$?

(A)
$$x = t^2 - 1, y = t \text{ for } t \ge 0$$

(B)
$$x = t, y = \sqrt{t+1}$$
 for $t \ge 1$

(C)
$$x = t - 1, y = \sqrt{t} \text{ for } t \ge 0$$

(D)
$$x = t - 2, y = \sqrt{t - 1} \text{ for } t \ge 1$$

Question 10

What is the domain of the function $y = \sin(\arcsin x)$?

- (A) $-1 \le x \le 1$ (B) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (C) $0 \le x \le \pi$
- (D) All real x

Section II

60 marks Attempt Questions 11 to 14 Allow about 1 hour and 45 minutes for this section Instructions

- Answer the questions in the appropriate writing booklet.
- In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet.

(a) Find
$$(2\underline{i}+3\underline{j})-(\underline{i}-2\underline{j})$$
. 1

(b) Use the
$$t = \tan \frac{x}{2}$$
 to show that $\sin x - \tan \frac{x}{2} = \tan \frac{x}{2} \cos x$. 2

(c) Use the substitution
$$u = x + 2$$
 to find $\int x\sqrt{x+2} dx$. 3

- (d) Solve the inequality $8 |2x 1| \le 5$.
- (e) A cylindrical tank of radius 2 m is being filled with water so that the volume is increasing at a constant rate of $3 \text{ m}^3/\text{min}$.

Find the rate of increase of the depth of the water in the tank.

2

3

(f) Evaluate
$$\int_{0}^{1} \frac{dx}{x^2 + 3}$$
 2

(g) Two swimmers want to swim from a point A on one island to point B on another island where B is due east of A. The ocean has a current of 1.2 ms⁻¹ in the direction of 135°T. Swimmer X swims at 3 ms⁻¹ in the direction of 063.43°T in order to reach point B. Swimmer Y swims at 2.4 ms⁻¹. On which bearing does swimmer Y need to swim in order to reach point B?

End of Question 11

Question 12 (15 marks) Start a new writing booklet and use the diagrams provided.

- (a) Consider function $f(x) = 2^x 3$,
 - (i) On the number plane provided on the separate sheet, 2 sketch the graph of y = f(x) showing the *x*- and *y*- intercept in exact values.
 - (ii) Find the equation of the inverse function $f^{-1}(x)$ as a natural logarithm function **3** and state its domain and range.
 - (iii) On the same number plane for part (i), sketch the graph of $y = f^{-1}(x)$. 1
- (b) The graph of a particular solution to a differential equation passes through the point (0,1).On the slope field provided on the separate sheet, sketch the graph of this particular solution.

1

(c) A hard-boiled egg at 98°*C* is put in a room at 18°*C*. After 5 minutes, the egg's temperature is 58°*C*. The rate of cooling of the egg is proportional to the excess of the temperature *T* of the egg over the temperature *S* of the room, i.e. $\frac{dT}{dt} = k(T - S)$ where *k* is a constant and *t* is time in minutes.

(i) Show that
$$k = \frac{-\ln 2}{5}$$
.

(ii) When will the temperature of the egg drop to 20°C?Correct answer to the nearest minute.

(d) (i) Show that
$$\frac{\sin\theta + \sin 3\theta + \sin 5\theta}{\cos\theta + \cos 3\theta + \cos 5\theta} = \tan 3\theta$$
 2

(ii) Hence solve
$$\frac{\sin\theta + \sin 3\theta + \sin 5\theta}{\cos\theta + \cos 3\theta + \cos 5\theta} = 1$$
, where $0 \le \theta \le 2\pi$. 2

End of Question 12

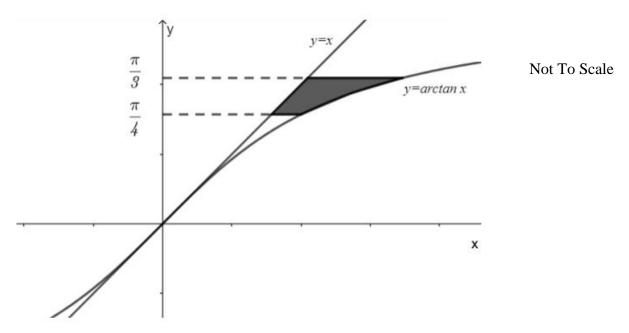
Question 13 (15 Marks) Start a new writing booklet.

(a) Find the volume formed when the region between the curve $y = \tan^{-1} x$ and the

lines y = x, $y = \frac{\pi}{3}$ and $y = \frac{\pi}{4}$, is rotated around the y axis, correct to 2 decimal places.

4

3



(b) Prove by mathematical induction that, for all integers $n \ge 1$,

$$\frac{2}{1\times3} + \frac{2}{2\times4} + \frac{2}{3\times5} + \dots + \frac{2}{n(n+2)} = \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}$$

Question 13 continues on the next page

Question 13 continued

(c) At a carnival, an air cannon fires a cylinder containing a t-shirt at time t = 0 seconds from an origin *O* at ground level across a level field. The position vector is

$$r(t) = 15\sqrt{3}t\underline{i} + (15t - 4.9t^2)\underline{j},$$

Where \underline{i} is a unit vector in the forward direction, \underline{j} is a unit vector vertically up and displacement components are measured in metres.

(i)	Find the initial velocity of the t-shirt and the initial angle, in degrees, of its trajectory to the horizontal.	2
(ii)	Find the maximum height reached by the t-shirt, giving your answer in metres to two decimal places.	2
(iii)	Find the time of the flight of the t-shirt. Give your answer in seconds, correct to three decimal places.	1
(iv)	Find the range of the t-shirt in metres, correct to 1 decimal place.	1
(v)	A person in the crowd, more than 40 m from <i>O</i> , catches the t-shirt at a height of 2 m above the ground. How far horizontally from O, is this person when the t-shirt is caught? Give your answer to one decimal place	2

End of Question 13

Question 14 (15 marks) Start a new writing booklet.

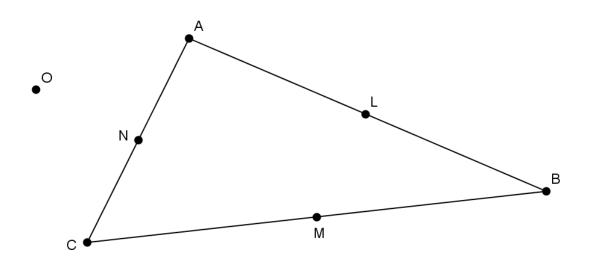
(a) The roots of $x^3 + 3x^2 - 4 = 0$ are α , β and γ .

What is the value of
$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma}$$
?

- (b) The population P(t) of bacteria in a petri dish is modelled by the logistic differential equation $\frac{dP}{dt} = \frac{P}{6} \left(1 \frac{P}{8000} \right)$ where $P(0) = P_0$ and *t* is the time in hours.
 - (i) If the initial population P_0 is 1000 bacteria, show that $P(t) = \frac{8000}{1+7e^{\frac{-t}{6}}}$. (You may use the fact that $\frac{Q}{P(Q-P)} = \frac{1}{P} + \frac{1}{Q-P}$)
 - (ii) If instead the initial population P_0 is 12 000 bacteria, describe what would have 1 happened to the population as *t* increases.

Question 14 continued

(c) The diagram shows O as the origin and a triangle with vertices A, B and C. Let the vectors $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OC} = \overrightarrow{c}$. L, M and N are the midpoints of \overrightarrow{AB} , \overrightarrow{CB} and \overrightarrow{AC} respectively.



- (i) Show that quadrilateral *LMNA* is a parallelogram.
- (ii) Deduce that a line through the midpoints of two sides of triangle is half the length of the third side.
- (d) The polynomial $g(x) = 4x^3 3x + 1$ passes through the point (1, 2).

(i) Show that
$$g(x)$$
 has a root of multiplicity of 2. 2

(ii) Find the gradient of the tangent to
$$f(x) = \frac{g^{-1}(x)}{x}$$
 at the point where $x = 2$. 3

End of paper

3

Hornsby Girls High School Year 12 Mathematics Extension 1 HSC Trial 2024 Solutions

Multiple Choice

Solutions	Marker's Comments
Question 1	
$a = 3i + j \qquad b = 2i - j$ $ a = \sqrt{9+1} \qquad , \qquad b = \sqrt{4+1}$ $= \sqrt{10} \qquad = \sqrt{5}$	
$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{ \underline{a} \underline{b} } = \frac{6-1}{\sqrt{10}\sqrt{5}} = \frac{5}{\sqrt{50}} = \frac{\sqrt{25}}{\sqrt{50}} = \frac{1}{\sqrt{2}}$	
$\cos \theta = \frac{1}{\sqrt{2}}$ $\theta = \frac{\pi}{4} \therefore B$	
Question 2	
Since $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	
$\cos 2\theta = 2\cos^2 \theta - 1$	
$2\cos^2\theta = 1 + \cos 2\theta$	
$\cos^2\theta = \frac{1}{2}(1 + \cos 2\theta)$	
$\therefore \cos^2 4x = \frac{1}{2}(1 + \cos 8x)$	
then	
$\int \cos^2 4x dx$	
$=\int \frac{1+\cos 8x}{2} dx \therefore B$	
Question 3	
$P(x) = x^3 - 3x^2 + 2x + 3$	
$P(-1) = (-1)^{3} - 3(-1)^{2} + 2(-1) + 3$ $= -1 - 3 - 2 + 3$	
$= -1 - 3 - 2 + 3$ $= -3 \therefore A$	

Solutions	Marker's Comments
Question 4	
$\frac{dy}{dx} = \frac{1}{xy}$	
dx xy	
$y. dy = \frac{1}{x} dx$ $\int y. dy = \int \frac{1}{x} dx$	
$\int y. dy = \int \frac{1}{x} dx$	
$\frac{y^2}{2} = \ln x + c_1$ $y^2 = 2\ln x + c_2 \therefore D$	
$y^2 = 2\ln x + c_2 \therefore D$	
Question 5	
$\overrightarrow{OA} \bullet \overrightarrow{OB} = 0$	
$\therefore \overrightarrow{OA} \perp \overrightarrow{OB} \therefore C$	
Question 6	
$\left(3x-\frac{2}{x^2}\right)^9$ has general term	
${}^{9}C_{r} 3x {}^{9-r} \left(\frac{-2}{x^{2}}\right)^{r}$	
$= {}^{9}C_{r}.3^{9-r}.x^{9-r}1^{r}.2^{r}.x^{-2r}$	
$= {}^{9}C_{r}.3^{9-r}.2^{r}1^{r}.x^{9-r}.x^{-2r}$	
$= {}^{9}C_{r}.3^{9-r}.2^{r}1^{r}.x^{9-3r}$	
Constant term when $9-3r=0$	
3r = 9 r = 3	
I = S	
${}^{9}C_{3}.3^{6}.2^{3}1^{3}.x^{0}$	
$= -{}^{9}C_{3}.3^{6}.2^{3} but {}^{9}C_{3} = {}^{9}C_{6}$	
$=-{}^{9}C_{6}.3^{6}.2^{3}$: D	

Solutions	Marker's Comments
Question 7	
$\sin x + \sqrt{3}\cos x = A\cos(x+\theta)$	
$\sin x + \sqrt{3}\cos x = A\cos x\cos\theta - A\sin x\sin\theta$	
so	
$A\sin\theta = -1$	
$A\cos\theta = \sqrt{3}$	
$\therefore \tan \theta = \frac{-1}{\sqrt{3}}$	
$\theta = \frac{-\pi}{6}$	
and	
$A^{2}\sin^{2}\theta + A^{2}\cos^{2}\theta = (-1)^{2} + (\sqrt{3})^{2}$	
$A^2(\sin^2\theta + \cos^2\theta) = 1 + 3$	
$A^2 = 4$	
A = 2	
\cdot \cdot $$	
$\therefore \sin x + \sqrt{3}\cos x = 2\cos(x + \frac{-\pi}{6})$	
$\sin x + \sqrt{3}\cos x = 2\cos\left(x - \frac{\pi}{6}\right) \therefore A$	
Question 8	
$1 \times 7 \times 8! = 282240$	
Or	
$9!-2 \times 8! = 282240$ C	

Solutions	Marker's Comments
Question 9	
$y = \sqrt{x+1}$ is equivalent to $y^2 = x+1$ with $D: x \ge -1$ $R: y \ge 0$	
(A) $x = t^2 - 1, y = t \text{ for } t \ge 0$	
$x = y^{2} - 1 \qquad D : x \ge -1$ $y^{2} = x + 1 \qquad R : y \ge 0$	
which is equivalent to $y = \sqrt{x+1}$.	
(B) $x = t, y = \sqrt{t+1} \text{ for } t \ge 1$	
which is equivalent to $y = \sqrt{x+1}$ with $D: x \ge +1$ $R: y \ge 0$	
and so is NOT equivalent $y = \sqrt{x+1}$. $\therefore B$.	
(C) $x = t - 1, y = \sqrt{t} \text{ for } t \ge 0$	
t = x + 1 $\therefore y = \sqrt{x + 1}$	
with $D: x \ge -1$ $R: y \ge 0$ which is equivalent to $y = \sqrt{x+1}$.	
(D) $x = t - 2, y = \sqrt{t - 1} \text{ for } t \ge 1$	
t = x + 2 $y = \sqrt{(x+2) - 1}$ $y = \sqrt{x+1}$	
with $D: x \ge -1$ $R: y \ge 0$ which is equivalent to $y = \sqrt{x+1}$.	

Ouestion 10

Question 10	
Domain of $y = \sin^{-1} x$ is $-1 \le x \le 1$ so	
domain of $y = \sin(\sin^{-1} x)$ is also $-1 \le x \le 1$. A	

SECTION II

Solutions	Marker's Comments
Question 11 (a) $(2\underline{i}+3\underline{j})-(\underline{i}-2\underline{j})=\underline{i}+5\underline{j}$	Very well done
(b) Show that $\sin x - \tan \frac{x}{2} = \tan \frac{x}{2} \cos x$ $LHS = \sin x - \tan \frac{x}{2}$	Done well by most students. Students need to take care to set their working out appropriately and show all steps for a 'show that' question.
$= \frac{2t}{1+t^{2}} - t$ = $\frac{2t - t(1+t^{2})}{1+t^{2}}$ $2t - t - t^{3}$	
$= \frac{2t - t - t^{3}}{1 + t^{2}}$ $= \frac{t - t^{3}}{1 + t^{2}}$ $= \frac{t(1 - t^{2})}{1 + t^{2}}$	
$= t \times \frac{1-t^2}{1+t^2}$ $= \tan \frac{x}{2} \times \cos x$	
LHS = RHS	
Question 11	
(c)	Done well by most students.
$\int x\sqrt{x+2} dx \text{using } u = x+2 \therefore x = u-2$	

1	
$\frac{du}{dx} = 1$ $du = dx$	
$\int x\sqrt{x+2} dx$ = $\int (u-2) \cdot u^{\frac{1}{2}} \cdot du$ = $\int (u^{\frac{3}{2}} - 2u^{\frac{1}{2}}) \cdot du$ = $\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{2u^{\frac{3}{2}}}{\frac{3}{2}} + c$ = $\frac{2\sqrt{u^{5}}}{5} - \frac{2 \times 2\sqrt{u^{3}}}{3} + c$ = $\frac{2\sqrt{(x+2)^{5}}}{5} - \frac{4\sqrt{(x+2)^{3}}}{3} + c$ or = $\frac{2(\sqrt{x+2})^{5}}{5} - \frac{4(\sqrt{x+2})^{3}}{3} + c$	There were a considerable number if students who left their answer in terms of u . It is essential to rewrite your answer in terms of x .
(d) $8 - 2x - 1 \le 5$ $- 2x - 1 \le -3$ $ 2x - 1 \ge 3$	Generally done well. Most students used the first method and were generally successful.
$2x-1^{2} \ge 3^{2}$ $2x-1 \le -3 or 2x-1 \ge 3$ $2x \le -2 \qquad 2x \ge 4$ $x \le -1 \qquad x \ge 2$ $4x^{2}-4x+1 \ge 9$ $4x^{2}-4x-8 \ge 0$ $4(x^{2}-x-2) \ge 0$ $4(x-2)(x+1) \ge 0$ $x \le -1, x \ge 2$	Not many students used the second method involving squaring both sides. Many of those that did use this method went on to make errors.
Question 11 (e) $ \frac{dV}{dt} = 3 \text{ and } V = \pi r^2 h $ $ V = 4\pi h $ $ \frac{dV}{dh} = 4\pi $	There were errors with the formula for volume $V \neq \frac{1}{3}\pi r^2 h$ $V \neq 4\pi r^2 h$

$$\frac{dh}{dt} = \frac{dh}{dt} \times \frac{dV}{dt}$$

$$= \frac{1}{4\pi} \times 3$$

$$\frac{dh}{dt} = \frac{3}{4\pi} m/\min$$

$$\frac{dh}{dt} = \frac{3}{4\pi}$$

$=\frac{4}{5}$ $\therefore v_{AB} _{y} = \frac{4}{5} \times 3.5659$ = 2.85278 = 2.85 m/s $(2.85)^{2} = (2.4)^{2} + (1.2)^{2} - 2(2.4)(1.2)\cos(\theta + 45)^{\circ}$ $\cos(\theta + 45)^{\circ} = \frac{(2.4)^{2} + (1.2)^{2} - (2.85)^{2}}{2(2.4)(1.2)}$ $\cos(\theta + 45)^{\circ} = -0.16015$ $\theta + 45^{\circ} = 99.37623^{\circ}$ $\therefore \theta = 54.37623^{\circ}$ $\therefore \theta = 54.38^{\circ} \text{ (to 2 d.p.)}$ The bearing of swimmer Y from A is 054.38° T = 054°23'T	No students dealt with the relationship between the speeds of the two swimmers
Alternative solution	OR
Ocean current is given by vector $c = 1.2 \cos 45^{o} \underline{i} - 1.2 \sin 45^{o} \underline{j}$ $c = 1.2 \frac{1}{\sqrt{2}} \underline{i} - 1.2 \frac{1}{\sqrt{2}} \underline{j}$ $c = \sqrt{0.72} \underline{i} - \sqrt{0.72} \underline{j}$ $c \cong 0.8485 \underline{i} - 0.8485 \underline{j}$	
Swimmer X is given by vector $x = 3\cos 26.57^{\circ} i + 3\sin 26.57^{\circ} j$	
Swimmer Y is given by vector $y = 2.4 \cos \theta^o \underline{i} + 2.4 \sin \theta^o \underline{j}$ Swimmer X swims from A to B with velocity $ v_{AB} _x = \sqrt{(3\cos 26.57 + \sqrt{0.72})^2 + (3\sin 26.57 - \sqrt{0.72})^2}$ $ v_{AB} _x = \sqrt{12.71624993}$ $ v_{AB} _x = 3.565985128 m/s$	1 mark awarded here. Some students achieved this mark No students dealt with the relationship between the speeds of the two swimmers
Swimmer Y swims at $\frac{2.4}{3} = \frac{4}{5}$ the rate of swimmer X $\frac{4}{5} \times v_{AB} _x = v_{AB} _y$ $\frac{4}{5} \times 3.5659 = \sqrt{(2.4\cos\theta + \sqrt{0.72})^2 + (2.4\sin\theta - \sqrt{0.72})^2}$	Some students were awarded a second mark here

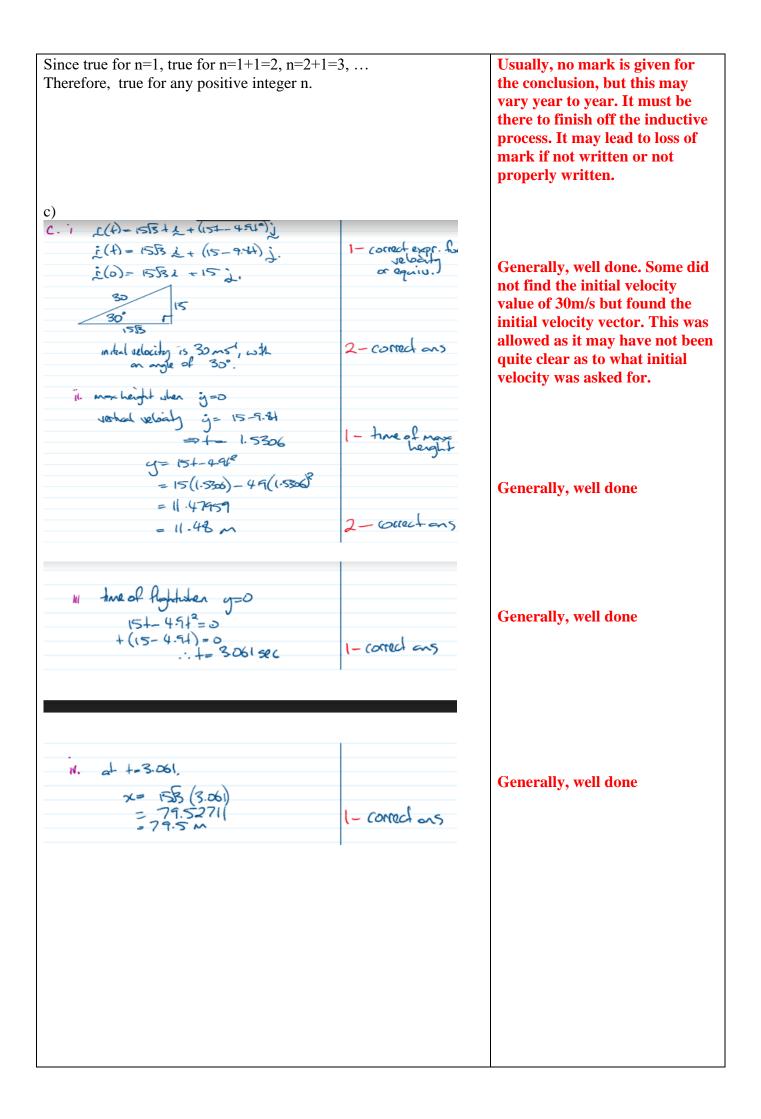
$\left(\frac{4}{5} \times 3.5659\right)^2 = 2.4^2 \cos^2 \theta + 2 \times 2.4 \cos \theta \sqrt{0.72} + 0.72 + 2.4^2 \sin^2 \theta - 2 \times 2.4 \sin \theta \sqrt{0.72} + 0.72$	
$\frac{16}{25} \times 12.71624993 = 2.4^{2} (\cos^{2}\theta + \sin^{2}\theta) + 2 \times 0.72 + 2 \times 2.4\sqrt{0.72} (\cos\theta - \sin\theta)$	
$\frac{16}{25} \times 12.71624993 = 2.4^2 \times 1 + 1.44 + 4.8\sqrt{0.72}(\cos\theta - \sin\theta)$	
$(\cos\theta - \sin\theta) = \frac{\frac{16}{25} \times 12.71624993 5.76 - 1.44}{4.8\sqrt{0.72}}$	
$(\cos\theta - \sin\theta) = \frac{-2}{4.8\sqrt{0.72}}$	
$(\cos\theta - \sin\theta) = 0.2303989489$	
$(\cos\theta - \sin\theta)^2 = 0.2303989489^2$ $\cos^2\theta - 2\cos\theta\sin\theta + \sin^2\theta = 0.05308367568$	
$\cos^2 \theta - 2\cos\theta \sin\theta + \sin^2 \theta = 0.05308367568$ $\cos^2 \theta + \sin^2 \theta - 2\cos\theta \sin \theta = 0.05308367568$	
$\frac{\cos \theta + \sin \theta - 2\cos \theta \sin \theta = 0.05308367568}{1 - \sin 2\theta = 0.05308367568}$	Some students were awarded 1
$\sin 2\theta = 0.9469$	mark for dealing with some of the
$2\theta = 71.2475$	concepts to get this incorrect
$\theta = 35.6237$	bearing
Bearing is	
$90^{\circ} - 35.62^{\circ}$	
$= 54.376.^{o}$	
$=54^{o}23'$	
Common error was to work with the ocean current and swimmer Y to reach due east which would mean the vertical component needs to equal zero	
$2.4\sin\theta - 1.2\sin45 = 0$	
$2.4\sin\theta - \sqrt{0.72} = 0$	
$2.4\sin\theta = \sqrt{0.72}$	
$\sin\theta = \frac{\sqrt{0.72}}{2.4}$	
2	
$\sin \theta = 0.3535533906$	
$\theta = 20.70481105^{\circ}$	
Bearing is	
$90^{\circ} - 20.70481^{\circ}$	
$= 69.295^{o}$	
Question 12 (a)	
$f(x) = 2^x - 3$	
x = 0, y = 1 - 3 = -2	
$y = 0, 2^{x} = 3, x = \frac{\ln 3}{\ln 2}$	
\therefore the y-intercept is (0, -2),	
the x-intercept is $\left(\frac{\ln 3}{\ln 2}, 0\right)$	

$f(x) = 2^{x} - 3$ $D: x \in \mathbb{R}, R: y > -3$ $x = 2^{y} - 3$ $2^{y} = x + 3$ $\ln 2^{y} = \ln x + 3 $ $y = \frac{\ln x + 3 }{\ln 2}$ $\therefore f^{-1}(x) = \frac{\ln(x + 3)}{\ln 2}$ $D: x > -3, y \in \mathbb{R}$	Many students didn't read the question carefully and didn't give the answer in natural log. Some students didn't realise that $x \neq -3$. Some mistakes with logs: $\frac{\ln x+3 }{\ln 2} \neq \ln\left(\frac{ x+3 }{2}\right)$.
(b)	Some students didn't draw the curve passing (0,1). Some students draw more solutions.
Solutions	Marker's Comments
Question 12 (c) $\frac{dT}{dt} = k (T - 18)$ $\int \frac{dT}{(T - 18)} = \int k dt$ $\ln T - 18 = kt + C$ $T - 18 = e^{kt + C}$ $T - 18 = Ae^{kt} (A = e^{C})$ $T = 18 + Ae^{kt}$	Students need to show sufficient workings to justify how they find the value of k.

(0 T 00	
t = 0, T = 98	
$98 = 18 + Ae^{k(0)}$	
A = 80	
$\therefore T = 18 + 80e^{kt}$	
t = 5, T = 58	
$58 = 18 + 80e^{k(5)}$	
$80e^{sk} = 40$	
$e^{sk} = \frac{1}{2}$	
$5k = \ln \frac{1}{2}$	
$k = \frac{\ln \frac{1}{2}}{5}$	
$\therefore k = \frac{-\ln 2}{5}$	
$\ldots \kappa = \frac{1}{5}$	
(ii)	
$T = 18 + 80e^{\frac{-\ln 2}{5}t}$	Generally well done.
T=20,	
$20 = 18 + 80e^{\frac{-\ln 2}{5}t}$	
$2 = 80e^{\frac{-\ln 2}{5}t}$	
$\frac{1}{40} = e^{\frac{-\ln 2}{5}t}$	
$\ln\frac{1}{40} = \frac{-\ln 2}{5}t$	
$\ln 40$ $-\ln 2$	
5	
$t = \frac{5 \ln 40}{1 + 2}$	
$\ln 2$ = 26.60964	
≈ 27 min	
∴ It takes approximately 27 minutes	
for the egg to drop to 20° C.	
(d)	
	Students need to show sufficient
	workings, e.g
	$\sin\theta + \sin 5\theta = 2\sin\left(\frac{\theta + 5\theta}{2}\right)\cos\left(\frac{\theta - 5\theta}{2}\right)$
	Or
	$\sin\theta + \sin 5\theta = \sin(3\theta - 2\theta) + \sin(3\theta + 2\theta)$
	· , ()

$LHS = \frac{\sin\theta + \sin 3\theta + \sin 5\theta}{\cos\theta + \cos 3\theta + \cos 5\theta}$	2 Marks Correct proof	
$LHS = \frac{(\sin\theta + \sin 5\theta) + \sin 3\theta}{(\cos\theta + \cos 5\theta) + \cos 3\theta}$	1 Mark	Generally well done.
$LHS = \frac{2\sin\left(\frac{5\theta+\theta}{2}\right)\cos\left(\frac{5\theta-\theta}{2}\right) + \sin 3\theta}{2\cos\left(\frac{5\theta+\theta}{2}\right)\cos\left(\frac{5\theta-\theta}{2}\right) + \cos 3\theta}$	Uses sums to products formula to demonstrate that	
$LHS = \frac{2 \sin 3\theta \cos 2\theta + \sin 3\theta}{2 \cos 3\theta \cos 2\theta + \cos 3\theta}$	$LHS = \frac{2\sin 3\theta\cos 2\theta + \sin 3\theta}{2\cos 3\theta\cos 2\theta + \cos 3\theta}$	
$LHS = \frac{\sin 3\theta \left(2\cos 2\theta + 1\right)}{\cos 3\theta \left(2\cos 2\theta + 1\right)}$		
$LHS = \frac{\sin 3\theta}{\cos 3\theta}$		
$LHS = \tan 3\theta$		
$LHS = RHS$ $\sin \theta + \sin 2\theta + \sin 5\theta$	1 Mark	
$\frac{\sin\theta + \sin 3\theta + \sin 5\theta}{\cos\theta + \cos 3\theta + \cos 5\theta} = 1, 0 \le \theta \le 2\pi$	1 Mark All answers correct	
$\tan 3\theta = 1$		
$3\theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \frac{17\pi}{4}, \frac{21\pi}{4}$		
$\theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{3\pi}{4}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{7\pi}{4}$		
Solutions		Marker's Comments
Question 13		
(a)		Mostly well done question
$V = \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^2 y - y^2 dy$		1 mark for correct integral of volume set up
$V = \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec^2 y - 1 - y^2 dy$		2 nd mark for correct sub of tan squared.
$V = \pi \left[\tan y - y - \frac{y^3}{3} \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$		3 rd mark for correct integration and/or substitution.
$V = \pi \left[\tan \frac{\pi}{3} - \frac{\pi}{3} - \frac{\pi^3}{3} - \left(\tan \frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi^3}{4} \right) \right]$ $V = \pi \left[\sqrt{3} - \frac{\pi}{3} - \frac{\pi^3}{81} - \left(1 - \frac{\pi}{4} - \frac{\pi^3}{192} \right) \right]$		4 th mark for correct numerical
$V = \pi \left[\sqrt{3} \frac{\pi}{3} \frac{\pi}{81} \left[1 \frac{\pi}{4} \frac{\pi}{192} \right] \right]$ $V = \pi \left[\sqrt{3} - 1 - \frac{\pi}{12} - \frac{\pi^3}{81} - \left(\frac{\pi^3}{192} \right) \right]$		expression or 0.78 units cubed
		Common errors where
$V pprox 0.78 units^3$		-forgetting the minus y^2
		-not knowing how to deal with
		the $\tan^2 y$, quite a few converted
		to $\frac{\sin^2 y}{\cos^2 y}$ which usually led to
		errors.

	It was good to se no short cuts with the substitution were taken because this was a correct numerical expression (CNE) which attained full marks if done correctly even if an error occurred in the final answer.
(b) for $n = 1$, LHS= $\frac{2}{1 \times 3} = \frac{2}{3}$ RHS= $\frac{3}{2} - \frac{2(1) + 3}{(1+1)(1+2)}$	Please be careful with induction and do not gloss over step 1. Substitution needs to be shown in RHS to PROVE it is true for n=1
$= \frac{3}{2} - \frac{5}{6}$ = $\frac{9}{6} - \frac{5}{6}$ = $\frac{4}{6}$ = $\frac{2}{3} = RHS$	1 mark awarded here.
∴ true for $n = 1$ Assume true for $n = k$, $\frac{2}{1 \times 3} + \frac{2}{2 \times 4} + \frac{2}{3 \times 5} + \dots + \frac{2}{k(k+2)} = \frac{3}{2} - \frac{2k+3}{(k+1)(k+2)}$	This statement needs to be made for n=k
Required to prove true for $n = k + 1$, <i>i.e.</i> $\frac{2}{1 \times 3} + \frac{2}{2 \times 4} + \frac{2}{3 \times 5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+1+2)} = \frac{3}{2} - \frac{2(k+1)}{(k+1+1)(k+1+1)(k+1+2)}$ Proof: LHS= $\frac{2}{1 \times 3} + \frac{2}{2 \times 4} + \frac{2}{3 \times 5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+3)}$ $= \frac{3}{2} - \frac{2k+3}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+2)}$ (by assumption)	+3 3 $2k+5$ A conrect statement needs to be made for n=k+1. This was awarded the second mark.
$= \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+1+2)} \text{(by assumption)}$ $= \frac{3}{2} - \left(\frac{(2k+3)(k+3) - 2(k+2)}{(k+1)(k+2)(k+3)}\right)$ $= \frac{3}{2} - \frac{2k^2 + 6k + 3k + 9 - 2k - 4}{(k+1)(k+2)(k+3)}$ $= \frac{3}{2} - \frac{2k^2 + 7k + 5}{(k+1)(k+2)(k+3)}$ $= \frac{3}{2} - \frac{(2k+5)(k+1)}{(k+1)(k+2)(k+3)}$ $= \frac{3}{2} - \frac{(2k+5)(k+1)}{(k+1)(k+2)(k+3)}$ $= \frac{3}{2} - \frac{2k+5}{(k+2)(k+3)} = RHS$	This line here is where many made an error. The + becoming a – when writing the fractions with a common denominator. You can tell when students work back whether they realised they made a mistake or simply tried to fudge the answer at the end.
If true for $n=k$, proven true for $n=k+1$.	



v. $y=2$ $151-4.91^{2} = 2$ $4.91^{2}-151+200$ () 1-6nds correct quadrahc 1-6nds correct 1-6nds correct quadrahc 1-6nds correct 1-6nds correct quadrahc 1-6nds correct 1-6nds correct 1-6nds 1	Generally, well done
Solutions	Marker's Comments
Question 14 (a) The roots of $x^3 + 3x^2 - 4 = 0$ are α , β and γ . $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$ $= \frac{-b}{a} \div \frac{-d}{a}$ $= \frac{-3}{1} \div \frac{-(-4)}{1}$ $= -3 \times \frac{1}{4}$ $= \frac{-3}{4}$ (1)	Mostly did well.
(b) (i) $\frac{dP}{dt} = \frac{P}{6} \left(1 - \frac{P}{8000} \right)$ $\frac{dP}{dt} = \frac{P}{6} \left(\frac{8000 - P}{8000} \right)$ $\left(\frac{8000}{P(8000 - P)} \right) dP = \frac{1}{6} dt$ $\int \left(\frac{8000}{P(8000 - P)} \right) dP = \frac{1}{6} \int dt$ Using $\frac{Q}{P(Q - P)} = \frac{1}{P} + \frac{1}{Q - P}$ $\int \frac{1}{P} + \frac{1}{8000 - P} dP = \frac{1}{6} \int dt$ $\int \frac{1}{P} - \frac{-1}{8000 - P} dP = \frac{1}{6} \int dt$ $\ln P - \ln 8000 - P = \frac{1}{6} t + C$ (1)	 22% got full marks. Many students (14%) should copy the given expression before they edit or modify as their first line of working. 14% did not "show" appropriate working.

$$\ln \left| \frac{P}{8000 - P} \right| = \frac{1}{6}t + C$$

$$\therefore \left| \frac{P}{8000 - P} \right| = e^{\frac{t}{6} + C}$$

$$\therefore \left| \frac{P}{8000 - P} \right| = e^{\frac{t}{6}}e^{C}$$

$$\therefore \frac{P}{8000 - P} = Ae^{\frac{t}{6}} \text{ where } A = \pm e^{C}$$

When $t = 0, P = 1000, \frac{(1000)}{8000 - (1000)} = Ae^{\frac{(0)}{6}}$

$$\frac{1000}{7000} = Ae^{0}$$

$$\therefore A = \frac{1}{7}$$

$$\therefore \frac{P}{8000 - P} = \frac{1}{7}e^{\frac{t}{6}}$$

$$P = \frac{1}{7}e^{\frac{t}{6}}(8000 - P)$$

$$7P = e^{\frac{t}{6}}(8000 - P)$$

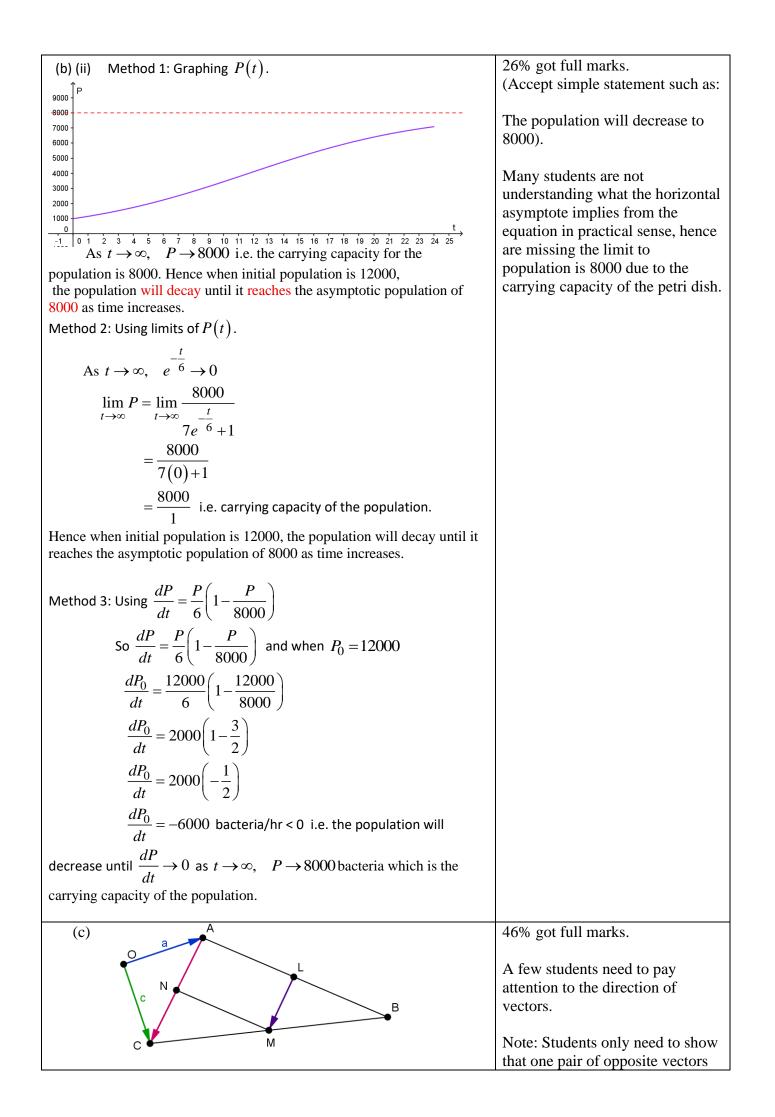
$$7P = 8000e^{\frac{t}{6}} - Pe^{\frac{t}{6}}$$

$$P \left(7 + e^{\frac{t}{6}}\right) = 8000e^{\frac{t}{6}}$$

$$P = \frac{8000e^{\frac{t}{6}}}{7 + e^{\frac{t}{6}}}$$

$$P = \frac{\left(\frac{8000e^{\frac{t}{6}}}{e^{\frac{t}{6}}}\right)}{\left(\frac{7 + e^{\frac{t}{6}}}{e^{\frac{t}{6}}}\right)}$$

$$\therefore P = \frac{8000}{7e^{\frac{t}{6}} + 1} \text{ (as required)}$$



(i) $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$ $\therefore \overrightarrow{AC} = c - a$	are equal to prove for a quadrilateral is a parallelogram.
$\overrightarrow{AN} = \frac{1}{2} \overrightarrow{AC}$ $\therefore \overrightarrow{AN} = \frac{1}{2} (c - a) \qquad (1)$	
$\overrightarrow{LM} = \overrightarrow{LB} + \overrightarrow{BM}$ $= \frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{CB}$ $1 (\overrightarrow{D}, \overrightarrow{D}) = 1 (\overrightarrow{D}, \overrightarrow{D})$	
$= \frac{1}{2} \left(\overrightarrow{OB} - \overrightarrow{OA} \right) - \frac{1}{2} \left(\overrightarrow{OB} - \overrightarrow{OC} \right)$ $= \frac{1}{2} \overrightarrow{OB} - \frac{1}{2} \overrightarrow{a} - \frac{1}{2} \overrightarrow{OB} + \frac{1}{2} \overrightarrow{c}$ $\overrightarrow{OB} = \frac{1}{2} \overrightarrow{OB} - \frac{1}{2} \overrightarrow{OB} + \frac{1}{2} \overrightarrow{c}$	
$\overrightarrow{LM} = -\frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{c}$ $= \frac{1}{2}(\overrightarrow{c} - \overrightarrow{a})$ $\therefore \overrightarrow{LM} = \overrightarrow{AN} \text{ (a pair of equal paprallel opposite side)}$	0
Hence ALMN is a parallelogram. Solutions	Marker's Comments
c)(ii) $\overrightarrow{AN} = \frac{1}{2} \overrightarrow{AC}$ $\left \overrightarrow{AN} \right = \frac{1}{2} \left \overrightarrow{AC} \right $	Many students did not use part (i) as part of the answer for this question. Quite poorly done.
and $\overrightarrow{LM} = \overrightarrow{AN}$ i.e. $ \overrightarrow{LM} = \overrightarrow{AN} $ $\therefore \overrightarrow{LM} = \frac{1}{2} \overrightarrow{AC} $ i.e. the length of the line through	
the midpoints of two sides of triangle is half the length of the third side. (1)	
Question 14 d)(i) $g(x) = 4x^3 - 3x + 1$	
$g'(x) = 12x^{2} - 3$ For multiplicity of 2, $g'(x) = 0$ $12x^{2} - 3 = 0$	
$3(4x^{2}-1) = 0$ $4x^{2}-1 = 0$ (2x-1)(2x+1) = 0	

$$\therefore x = \pm \frac{1}{2} \qquad ()$$
There are two solutions for $g'(x) = 12x^2 - 3$, not just one solution of $x = \frac{1}{2}$. So students that assumed that $x = \frac{1}{2}$ is the only solution and tested $g(\frac{1}{2}) = 4(\frac{1}{2})^3 - 3(\frac{1}{2}) + 1 = 0$ (i)
 $\therefore (2x-1)^2$ is a factor.
 $g(-1) = 4(-1)^3 - 3(-1) + 1 = 0$
 $\therefore g(x) = (2x-1)^2(x+1)$
 $\therefore g(x)$ has a multiplicity of 2.
Or $\left[x - \frac{1}{2}\right]^2$ and then use division transformation
 $x^2 - x + \frac{1}{4}\sqrt{\frac{4x^3 - 4x^2 + x}{4x^2 - 4x + 1}} + \frac{4x^2 - 4x + 1}{0}$
 $g(x) = 4(x+1)(x-\frac{1}{2})^2$ has a multiplicity of 2
(ii) $g(x) = 4x^3 - 3x + 1$ at $(1, 2)$ i.e. $g(1) = 2$
 $g^{-1}(2) = 1$
 $f(x) = \frac{g^{-1}(x)}{x^2}$ and if $g^{-1}(x) = y$
 $x = g(y)$
 $\frac{dy}{dx} = \frac{1}{g'(y)}$
 $\frac{dy}{dx} = \frac{1}{g'(y)}$
 $\frac{d}{dx} g^{-1}(x) = \frac{1}{g'(g^{-1}(x))}$

$$f'(x) = \frac{\frac{1}{g'(g^{-1}(x))}x - g^{-1}(x)}{x^2}$$

$$f'(2) = \frac{\frac{1}{g'(g^{-1}(2))}(2) - g^{-1}(2)}{(2)^2}$$

$$f'(2) = \frac{\frac{2}{g'(1)} - 1}{4}$$

$$f'(2) = \frac{\left(\frac{2}{12(1)^2 - 3} - 1\right)}{4}$$

$$f'(2) = \frac{\frac{2}{9} - 1}{4}$$

$$f'(2) = \frac{\frac{2}{9} - 1}{4}$$

$$f'(2) = \frac{\left(-\frac{7}{9}\right)}{4}$$

$$\therefore f'(2) = \frac{-7}{36}$$

(1)
ence the gradient of the tangent is $-\frac{7}{-1}$

nce the gradient of the tangent is $-\frac{1}{36}$ He

Alternative notation:

$$f'(x) = \frac{x \times \frac{d}{dx} g^{-1}(x) - g^{-1}(x) \times 1}{x^2}$$

$$f'(2) = \frac{2 \times \frac{d}{dx} g^{-1}(2) - g^{-1}(2) \times 1}{2^2}$$

$$g: y = 4x^3 - 3x + 1 \text{ passes through } 1,2$$

$$g^{-1}: x = 4y^3 - 3y + 1 \text{ passes through } 2,1$$

$$\frac{dx}{dy} = 12y^2 - 3$$

$$\therefore \frac{dy}{dx} = \frac{1}{12y^2 - 3}$$

when $y = 1$

$$\frac{dy}{dx} = \frac{1}{12 - 3} = \frac{1}{9}$$

i.e $\frac{d}{dx} g^{-1}(2) = \frac{1}{9}$

1

1

so

$ = \frac{\frac{2}{9} - 1}{4} = \frac{\frac{-7}{9}}{4} = \frac{-7}{36} $	$f'(2) = \frac{2 \times \frac{1}{9} - 1}{4}$	
-7	$=\frac{\frac{2}{9}-1}{4}$	
-7	$=\frac{-\frac{7}{9}}{4}$	0
50		